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 Abstract – This study aims to build a standard framework 
that can be applied to accomplish different tasks for a quadruped 
robot. To achieve this goal, a task-oriented hierarchical control 
framework is proposed. The framework is composed of four 
layers, including the task, action, movement, and joint layer, 
where the action layer plays a crucial role. An action is defined as 
a group of movements that take the robot from an initial 
position/orientation to another position/orientation. All actions 
form the action library, which can be combined to accomplish 
different tasks. Based on the hierarchical control framework, two 
tasks including path following and ditch crossing are achieved in 
this paper. The advantages of the proposed hierarchical control 
framework are its universality and extendibility since it can be 
easily applied to other tasks by enriching the action library. 
Simulation results in V-REP are given to validate the 
effectiveness of the proposed method.1 
 
 Index Terms – Quadruped robot, hierarchical control, path 
following, ditch crossing. 
 

I.  INTRODUCTION 

 Legged robots have attracted a lot of attentions in recent 
years since they are considered to be more capable of 
traversing rough terrains than wheeled or tracked robots [1]. 
Legged robots can be divided into biped, quadruped, and 
multilegged robots, among which quadruped robot balances 
well between stability and complexity, making it promising to 
be a good assistant in many aspects such as disaster relief, 
field transportation, and planetary exploration.  
 As a kind of mobile robot, the basic task for a quadruped 
robot is locomotion, that is, to transfer from one place to 
another place. According to the walking environments, the 
locomotion task includes path following, ditch crossing, slope 
walking, stairs climbing and so on. Various methods have been 
proposed considering different task scenarios. The problem of 
following an arbitrary path is addressed in [2] using both 
discontinuous crab and turning gaits for quadruped robots. 
Path following in a cluttered environment is achieved in [3] for 
a real quadruped robot named TITAN-VIII by using 
continuous and omnidirectional crawl gait. In [4], a successive 
gait-transition method is proposed for a quadruped robot to 
realize omnidirectional static walking. In [5], omnidirectional 
path following is achieved with parameters optimized 
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simultaneously for all directions of motion and turning rates.  
A two-phase discontinuous gait algorithm for ditch crossing 
and avoidance of quadruped robots with a failed leg is 
presented in [6]. A rhythmic motion generation and gait 
planning algorithm is proposed in [7] for crossing planar 
obstacles such as a ditch for a quadruped robot. The 
relationship between the morphological parameters of 
quadruped robots and the capability of obstacle-negotiation in 
the ditch crossing scenario is studied in [8] based on static 
stability and critical postures. Besides, slope walking is studied 
in [9, 10] and stairs climbing is studied in [11, 12]. 
 A more challenging task is to transverse rocky terrain. In 
2005, the Defense Advanced Research Projects Agency 
(DARPA) launched a three-year program named Learning 
Locomotion which is designed to investigate quadrupedal 
locomotion over rocky terrain with the Boston Dynamics 
“LittleDog” quadruped robot. A bunch of results have been 
obtained from this program by teams from different 
institutions. The Stanford University team [13] presents a 
hierarchical control architecture that enables the “LittleDog” 
to walk over rough terrain. The University of Southern 
California team [14] achieves the task by decomposing it into 
many sub-systems, in which the state-of-the-art learning, 
planning, optimization and control techniques are applied. 
 Although various methods have been proposed to 
accomplish different tasks for a quadruped robot, in this paper 
we aim to build a standard framework that can be applied to 
handle a wide variety of tasks. Motivated by [13, 14], a task-
oriented hierarchical control framework is proposed. In [13], 
the hierarchical control includes a high-level planner that plans 
a set of footsteps, a low-level planner that plans trajectories for 
the robot’s feet and center of gravity (COG), and a low-level 
controller that tracks these desired trajectories. In this paper 
we adopt a different hierarchical logic, where the framework is 
composed of four layers, including the task, action, movement, 
and joint layer. Then the task can be solved from top to 
bottom, step by step, which greatly reduces the complexity. 
The idea is very similar to the hierarchical structure in 
computer programming, where the system is modularized into 
different subfunctions and the main program calls the 
subfunctions to complete a sophisticated task. Based on the 
hierarchical control framework, two tasks including path 
following and ditch crossing are achieved. The advantage of 
the proposed hierarchical control framework is its universality 
and expandability. By enriching the action library, the 
hierarchical control framework can be easily extended to other 
tasks such as slope walking and stairs climbing.  
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II.  THE HIERARCHICAL CONTROL FRAMEWORK 

 As shown in Fig. 1, the hierarchical control framework is 
composed of four layers, including the task, action, movement, 
and joint layer.  

Path following, ditch crossing, ...

Joint

Movement

Action

Task

Examples

Move forward, turn left, ...

Body shift, leg swing, ...

Move to a desired joint angle

 
Fig. 1 The hierarchical control framework. 

 
 (1) The task layer: This is the highest layer. In this layer, 
the quadruped robot is treated as a mass point, and a task is 
usually to transfer from one place to another place. Examples 
of tasks are path following and ditch crossing. 
 (2) The action layer: This is a crucial layer.  An action 
consists of a series of movements that take the robot from an 
initial position/orientation to another position/orientation, for 
example, move forward/backward for a certain distance, or 
turn left/right for a certain angle.  
 (3) The movement layer: This is a single movement of 
the body or the leg. For example, the body shift in a direction 
for a certain distance or pitch/roll/yaw for a certain degree. A 
leg swing is also a movement. 
 (4) The joint layer: This is the lowest layer. In this layer, 
all joints follow the desired joint angles so that the robot’s 
body or leg can realize a desired movement.  
 With the definition of each layer, a task can then be 
achieved from top to bottom by designing the commands for 
each layer. We call this as the task-oriented hierarchical 
control. In this framework, the realization of a task can be 
divided into three steps as shown in Fig. 2.  

Step 1: High-level motion plan

Step 2: Middle-level action design

Step 3: Low-level joint control

Given Task Action Series

Action Command Movement Series

Movement Command Joint Angle Series

 
Fig. 2 Three steps of the hierarchical control framework. 

  
 In the first step, the task is decomposed into a series of 
actions. In this step we treat the robot as a whole and plan its 
motion at a macro level. In the second step, an action is 
decomposed into a series of movements.  This step cares about 
the detailed movement of robot’s different parts. In the third 
step, a movement is decomposed into a series of joint rotations 
which can be achieved by controlling the motors. Among the 
three steps, the third step is relatively easy since it is an inverse 
kinematics problem where many existing methods are 
available. Therefore, we will focus on the first two steps in the 
following sections.  

III.  ESTABLISHMENT OF THE ACTION LIBRARY 

 In this section, we will establish the action library which 
are needed to accomplish the given tasks. An action consists of 
a series of movements that take the robot from an initial 
position/orientation to another position/orientation.  There are 
some basic requirements for an action.  
 (1) First of all, during the execution of an action, the robot 
should maintain stable. To make it simple, only static gait is 
considered in this paper and the center of mass (CoM) of the 
robot is assumed to be located below the geometric center. 
Therefore, the stability requirement becomes that the 
projection of the CoM should maintain in the support polygon.  
 (2) Secondly, an action should be combinable. This means 
that an action can be spliced with itself or other actions. It 
requires the final configuration of the robot in an action can be 
used as the initial configuration of another action. 
 In addition, there can be some other requirements such as 
the action parameters are adjustable. 
 When a task is given, a customized action library should 
be carefully built such that it has the ability to accomplish the 
given task. In this paper, two tasks are considered, that are, 
path following and ditch crossing. For these two tasks, only 
two basic actions are needed. As shown in Fig. 3, one is the 
translation action where the robot moves forward or backward 
for a certain distance, and the other is the rotation action where 
the robot rotates along its center for a certain angle. For other 
tasks such as slope walking and stairs climbing, more actions 
can be added to the action library. 

d

                       

θ

 
(a) Translation                                    (b) Rotation 

Fig. 3 Two basic actions.  
  

 As an interface to the high-level planning subsystem, the 
task layer only cares about the input/output of an action, which 
are listed in Table I and II.  
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TABLE I 
SPECIFICATION OF THE TRANSLATION ACTION 

Action parameter 
The translation distance, go forward as + and go 

backward as - 
Initial configuration Standard configuration 
Final configuration Standard configuration 

 
TABLE II 

SPECIFICATION OF THE ROTATION ACTION 
Action parameter The rotation angle, turn left as + and turn right as - 

Initial configuration Standard configuration 
Final configuration Standard configuration 

 

 In the middle-level action design subsystem, we need to 
specify the detailed movements within each action. To ensure 
static stability, the strategy we adopted is to let the robot 
switch between body shift and leg swing. During the period of 
body shift, the robot keeps its four feet on the ground and 
shifts the body to the desired position/orientation. During leg 
swing, the robot keeps it body still and lifts one foot, move it 
to reach the desired position and then put it down.  
 Specifically, the translation action consists of 7 
movements as shown in Fig. 4. In consideration of stability, 
the leg swing sequence is 4-2-3-1 when going forward and 2-4-
1-3 when going backward. 

Body shift Leg swing
Left 5cm

Leg swing Body shift Leg swing Body shift Leg swing
① ② ③ ④ ⑤ ⑥ ⑦

Foot4 d

Foot1 Foot2

Foot3 Foot4

Foot2 d Foot3 d Foot1 dRight 10cm
Forward d

Left 5cm

Action parameter: d = the translation distance

Fig. 4 Action of translation (go forward). 
 

 The rotation action consists of 9 movements as shown in 
Fig. 5. To obtain larger stability margin, the leg swing 
sequence is 1-2-4-3 when the robot makes a right turn and 2-1-
3-4 when it makes a left turn. 

Body shift Leg Swing Leg Swing Body shift

Body shift Body shift

Leg Swing

Leg Swing

① ② ③ ④ ⑥

⑦ ⑧ ⑨

Backward 5cm Foot1 Foot2 Forward 10cm Foot4

Foot3 Backward 5cm Turn left θ

Action parameter: θ = the rotation angle
Foot1 Foot2

Foot3 Foot4

 
Fig. 5 Action of rotation (turn right). 

  
 During a rotation, we need to determine the next location 
of each foot. As shown in Fig. 6, R is half the length between 

two diagonal feet in the standard configuration, α is the angle 
between the foot diagonal line and the fore-aft centerline of the 
robot, and θ is the rotation angle.  

θ

x

y

α
Foot1

Foot2

Foot3 Foot4

dx2

dy2  

 

αθ

dx1

dy1

R

 
Fig. 6 Next location of each foot after a rotation.  

 

 When the robot makes a right turn of θ, the relative 
displacement of Foot 1 and Foot 2 can be obtained as 
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Similarly, for Foot 3 and Foot 4, we have 
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Then the robot can place its feet to the right position 
during leg swing. 
 

III. TASK REALIZATION 

 Based on the action library, it is now ready to do the high-
level motion planning according to different tasks. In this 
section we will introduce how to realize the path following and 
ditch crossing task, respectively. 
A.  Path Following 
 For the path following task, the center (i.e., CoM) of the 
quadruped robot is required to follow a predefined path on the 
level ground as shown in Fig. 7. Particularly, the robot is 
required to adjust its orientation according to its position on 
the path so that the robot’s head is always facing to the front 
path.  
 The strategy we adopted here is similar to the “turtlesim” 
simulator in ROS Kinetic, where the turtle can rotate or go 
forward and it can move around by controlling the transition 
between these two actions. For path following, the key is to 
determine when the robot should go forward and when to 
make a turn. Since we have already built the action library, the 
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problem then becomes to determine which action to take. The 
detailed path following algorithm is given in Fig. 8. 

φ

Path

Foot4Foot3

Foot1 Foot2

O

B

A

 
Fig. 7 Schematic diagram of path following.  

 

Find the closet point  A on the path to the 
robot center O 

Start

Calculate the angle φ between OB and the 
fore-aft centerline of the robot

|φ|≥20°

Do traslation of 
|OB| 

Do rotation of 
sign(φ)*20° 

Do rotation of φ |φ|≥3°

Stop?
Yes

End

No

No
Yes

No

Yes

Find another point B which is 15cm away 
from A along the path

|OB|≥20cm
Do traslation of 

20cm Yes

No

 
Fig. 8 The path following algorithm. 

 

B.  Ditch Crossing 
 For the ditch crossing task, the quadruped robot is 
required to safely cross a ditch from one side to another side 
on the level ground. We assume that the ditch width does not 
exceed the maximum step length of the quadruped robot. The 
basic idea of the ditch crossing strategy is: keep the body front 
edge parallel to the edge of the ditch, and then go forward and 
adjust the step length according to the location of the ditch. As 
shown in Fig. 9, denote the ditch width as w, the distance of 
the front leg to the ditch edge as d1 and the distance of the hind 
leg to the ditch edge as d2. Then the detailed ditch crossing 
algorithm is given in Fig. 10. With this algorithm, the robot 

can safely step over the ditch regardless of its initial position 
and orientation. 

Ditch

Foot4

Foot3 Foot1

Foot2

O d1

d2

w

 
Fig. 9 Schematic diagram of ditch crossing.  

 

Start

Calculate the angle ψ between the body 
front edge and the edge of the ditch

|ψ|≥1°

Do translation of 
15cm

Do rotation of ψ 

Do traslation of 
d1 －1 

1<d1<15cm

Stop?
Yes

End

No

No
Yes

No
Yes

0<d1≤1cm
Do traslation of 

w+2 

1<d2<15cm

0<d2≤1cm

Do traslation of 
d2 －1

Do traslation of 
w+2 

Yes
No

Yes

Yes

No

No

Calculate the distance d1 and d2

 
Fig. 10 The ditch crossing algorithm. 

 

IV.  SIMULATION RESULTS 

To validate the effectiveness of the proposed method, 
simulations are done in the V-REP software with the Newton 
physical engine. The quadruped robot model we built in V-
REP is shown in Fig. 11, which is originated from our 
prototype quadruped robot as shown in Fig. 12.  

Unlike many other quadruped robot, the leg configuration 
we adopted is backward/forward (outward-pointing) because: 
(1) To ensure that the CoM is close to the geometric center, a 
symmetric configuration (inward-pointing or outward-
pointing) is preferred considering that the leg is relatively 
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heavy since one motor is placed on the knee. (2) Outward-
pointing can avoid collision between the front leg and the hind 
leg. Other specifications of the quadruped robot model are 
listed in Table III. 

 
Fig. 11 The quadruped robot model in V-REP.  

 

 
Fig. 12 The prototype quadruped robot. 

    
TABLE III 

SPECIFICATIONS OF THE QUADRUPED ROBOT MODEL 
Size (L × W × H, fully stretched legs) 0.6m×0.4m×0.65m 

Weight 56kg 

Degrees of Freedom 
12 (3 per leg, including HAA, 

HFE, and KFE) 
Joint Torque 100 Nm for all joints 

 
A. Path Following 
 To test the path following algorithm, we built the scenario 
as shown in Fig. 13. Two paths are considered here: one is a 
closed curve and the other is a pentagram. 

 
Fig. 13 Scenario of the path following task. 

 
 Fig. 14 shows the simulation results of following a closed 
curve. The blue line shows the trajectory of the robot center 
while the red dots are the position of the robot center after 
taking each action. It can be observed that the robot follows 
very well with the curve. Specifically, the robot’s center is 
almost exactly on the path after each action, while it crossess 
the path back and forth during each action. Fig. 15 shows the 

simulation results of following a pentagram path. The robot 
still follows very well. Particularly, it is noticed that the red 
dots are dense at the sharp corners. This is because that the 
robot do rotation for several times at the corner to adjust its 
orientation so that the robot can face to the path.  

 
Fig. 14 Simulation results of following a closed curve. The blue line shows 
the trajectory of the robot center while the red dots are the position of the 

robot center after taking each action. 

 

 
Fig. 15 Simulation results of following a pentagram path. 

 
B. Ditch Crossing 
 To test the ditch crossing algorithm, we built the scenario 
as shown in Fig. 16. The ditch width is 20cm, and the initial 
orientation of the robot’s body is not aligned with the ditch.  

 
Fig. 16 Scenario of the ditch crossing task. 
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 The simulation result is shown in Fig. 17. The red dots 
represent the footprints of the front legs and the blue dots for 
the hind legs. It can be seen that all the footprints avoids the 
ditch very well which indicates that the robot successfully 
crosses the ditch. The footprints show that the robot is 
adjusting its orientation at the beginning to make its body front 
edge be parallel with the ditch edge. After its orientation is 
ready, the robot starts to approach the ditch. Particularly, it can 
be noticed that the robot reduces its step length when the front 
legs are close to the ditch. 

 
Fig. 17 Simulation results of ditch crossing. The red dots represent the 

footprints of the front legs and the blue dots for the hind legs. 
 

 To further verify that the ditch crossing ability is 
irrelevant with the robot’s initial position/orientation, 50 
MonteCarlo runs are taken with the robot’s initial orientation 
selected randomly within [0, 360 ° ] and its initial position 
selected randomly within a 40cm×40cm region (the black 
square in Fig. 18). The simulation results are given in Fig. 18. 
Still the red dots represent the footprints of the front legs and 
the blue dots for the hind legs. It can be seen that the robot 
successfully crosses the ditch for all the 50 trials, which 
verifies the robustness of the ditch crossing algorithm.  

 
Fig. 18 Monte Carlo simulation results of ditch crossing. The robot’s initial 
orientation is selected randomly within [0, 360°] and its initial position is 

selected randomly within the black square. 
 

  V. CONCLUSIONS 
 This paper proposes a task-oriented hierarchical control 
framework for a quadruped robot. There are four layers in this 

framework, including the task, action, movement, and joint 
layer. The action is the core in this framework, which consists 
of a series of movements that take the robot from an initial 
position/orientation to another position/orientation. Different 
actions can be combined to achieve a given task. Two tasks are 
considered in this paper, including path following and ditch 
crossing. A customized action library is built and the high-
level control algorithms are presented. This framework takes 
into account both universality and extendibility, which gives it 
the potential to accomplish a wide variety of tasks. In the 
future, more complicated tasks such as slope walking and 
stairs climbing will be considered and experiments will be 
done with our practical robot platform. 
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