
Task-oriented Hierarchical Control for a Quadruped Robot

Linqi Ye, Houde Liu, Xueqian Wang and Bo Yuan Bin Liang
Graduate School at Shenzhen Department of Automation

Tsinghua University Tsinghua University
Shenzhen, Guangdong Province, China Beijing, China

{ye.linqi, liu.hd, wang.xq & yuanb}@sz.tsinghua.edu.cn bliang@tsinghua.edu.cn

 Abstract – This study aims to build a standard framework
that can be applied to accomplish different tasks for a quadruped
robot. To achieve this goal, a task-oriented hierarchical control
framework is proposed. The framework is composed of four
layers, including the task, action, movement, and joint layer,
where the action layer plays a crucial role. An action is defined as
a group of movements that take the robot from an initial
position/orientation to another position/orientation. All actions
form the action library, which can be combined to accomplish
different tasks. Based on the hierarchical control framework, two
tasks including path following and ditch crossing are achieved in
this paper. The advantages of the proposed hierarchical control
framework are its universality and extendibility since it can be
easily applied to other tasks by enriching the action library.
Simulation results in V-REP are given to validate the
effectiveness of the proposed method.1

 Index Terms – Quadruped robot, hierarchical control, path
following, ditch crossing.

I. INTRODUCTION

 Legged robots have attracted a lot of attentions in recent
years since they are considered to be more capable of
traversing rough terrains than wheeled or tracked robots [1].
Legged robots can be divided into biped, quadruped, and
multilegged robots, among which quadruped robot balances
well between stability and complexity, making it promising to
be a good assistant in many aspects such as disaster relief,
field transportation, and planetary exploration.
 As a kind of mobile robot, the basic task for a quadruped
robot is locomotion, that is, to transfer from one place to
another place. According to the walking environments, the
locomotion task includes path following, ditch crossing, slope
walking, stairs climbing and so on. Various methods have been
proposed considering different task scenarios. The problem of
following an arbitrary path is addressed in [2] using both
discontinuous crab and turning gaits for quadruped robots.
Path following in a cluttered environment is achieved in [3] for
a real quadruped robot named TITAN-VIII by using
continuous and omnidirectional crawl gait. In [4], a successive
gait-transition method is proposed for a quadruped robot to
realize omnidirectional static walking. In [5], omnidirectional
path following is achieved with parameters optimized

*This work was supported by National Natural Science Foundation of

China (No.61673239, No.61803221), Natural Science Foundation of
Guangdong Province (2015A030313881) and the Basic Research Program of
Shenzhen (JCYJ20160301100921349, JCYJ20160428182227081).
(Corresponding author: Houde Liu)

simultaneously for all directions of motion and turning rates.
A two-phase discontinuous gait algorithm for ditch crossing
and avoidance of quadruped robots with a failed leg is
presented in [6]. A rhythmic motion generation and gait
planning algorithm is proposed in [7] for crossing planar
obstacles such as a ditch for a quadruped robot. The
relationship between the morphological parameters of
quadruped robots and the capability of obstacle-negotiation in
the ditch crossing scenario is studied in [8] based on static
stability and critical postures. Besides, slope walking is studied
in [9, 10] and stairs climbing is studied in [11, 12].
 A more challenging task is to transverse rocky terrain. In
2005, the Defense Advanced Research Projects Agency
(DARPA) launched a three-year program named Learning
Locomotion which is designed to investigate quadrupedal
locomotion over rocky terrain with the Boston Dynamics
“LittleDog” quadruped robot. A bunch of results have been
obtained from this program by teams from different
institutions. The Stanford University team [13] presents a
hierarchical control architecture that enables the “LittleDog”
to walk over rough terrain. The University of Southern
California team [14] achieves the task by decomposing it into
many sub-systems, in which the state-of-the-art learning,
planning, optimization and control techniques are applied.
 Although various methods have been proposed to
accomplish different tasks for a quadruped robot, in this paper
we aim to build a standard framework that can be applied to
handle a wide variety of tasks. Motivated by [13, 14], a task-
oriented hierarchical control framework is proposed. In [13],
the hierarchical control includes a high-level planner that plans
a set of footsteps, a low-level planner that plans trajectories for
the robot’s feet and center of gravity (COG), and a low-level
controller that tracks these desired trajectories. In this paper
we adopt a different hierarchical logic, where the framework is
composed of four layers, including the task, action, movement,
and joint layer. Then the task can be solved from top to
bottom, step by step, which greatly reduces the complexity.
The idea is very similar to the hierarchical structure in
computer programming, where the system is modularized into
different subfunctions and the main program calls the
subfunctions to complete a sophisticated task. Based on the
hierarchical control framework, two tasks including path
following and ditch crossing are achieved. The advantage of
the proposed hierarchical control framework is its universality
and expandability. By enriching the action library, the
hierarchical control framework can be easily extended to other
tasks such as slope walking and stairs climbing.

978-1-7281-6321-5/19//$31.00 ©2019 IEEE

Proceeding of the IEEE
International Conference on Robotics and Biomimetics

Dali, China, December 2019

2146

II. THE HIERARCHICAL CONTROL FRAMEWORK

 As shown in Fig. 1, the hierarchical control framework is
composed of four layers, including the task, action, movement,
and joint layer.

Path following, ditch crossing, ...

Joint

Movement

Action

Task

Examples

Move forward, turn left, ...

Body shift, leg swing, ...

Move to a desired joint angle

Fig. 1 The hierarchical control framework.

 (1) The task layer: This is the highest layer. In this layer,
the quadruped robot is treated as a mass point, and a task is
usually to transfer from one place to another place. Examples
of tasks are path following and ditch crossing.
 (2) The action layer: This is a crucial layer. An action
consists of a series of movements that take the robot from an
initial position/orientation to another position/orientation, for
example, move forward/backward for a certain distance, or
turn left/right for a certain angle.
 (3) The movement layer: This is a single movement of
the body or the leg. For example, the body shift in a direction
for a certain distance or pitch/roll/yaw for a certain degree. A
leg swing is also a movement.
 (4) The joint layer: This is the lowest layer. In this layer,
all joints follow the desired joint angles so that the robot’s
body or leg can realize a desired movement.
 With the definition of each layer, a task can then be
achieved from top to bottom by designing the commands for
each layer. We call this as the task-oriented hierarchical
control. In this framework, the realization of a task can be
divided into three steps as shown in Fig. 2.

Step 1: High-level motion plan

Step 2: Middle-level action design

Step 3: Low-level joint control

Given Task Action Series

Action Command Movement Series

Movement Command Joint Angle Series

Fig. 2 Three steps of the hierarchical control framework.

 In the first step, the task is decomposed into a series of
actions. In this step we treat the robot as a whole and plan its
motion at a macro level. In the second step, an action is
decomposed into a series of movements. This step cares about
the detailed movement of robot’s different parts. In the third
step, a movement is decomposed into a series of joint rotations
which can be achieved by controlling the motors. Among the
three steps, the third step is relatively easy since it is an inverse
kinematics problem where many existing methods are
available. Therefore, we will focus on the first two steps in the
following sections.

III. ESTABLISHMENT OF THE ACTION LIBRARY

 In this section, we will establish the action library which
are needed to accomplish the given tasks. An action consists of
a series of movements that take the robot from an initial
position/orientation to another position/orientation. There are
some basic requirements for an action.
 (1) First of all, during the execution of an action, the robot
should maintain stable. To make it simple, only static gait is
considered in this paper and the center of mass (CoM) of the
robot is assumed to be located below the geometric center.
Therefore, the stability requirement becomes that the
projection of the CoM should maintain in the support polygon.
 (2) Secondly, an action should be combinable. This means
that an action can be spliced with itself or other actions. It
requires the final configuration of the robot in an action can be
used as the initial configuration of another action.
 In addition, there can be some other requirements such as
the action parameters are adjustable.
 When a task is given, a customized action library should
be carefully built such that it has the ability to accomplish the
given task. In this paper, two tasks are considered, that are,
path following and ditch crossing. For these two tasks, only
two basic actions are needed. As shown in Fig. 3, one is the
translation action where the robot moves forward or backward
for a certain distance, and the other is the rotation action where
the robot rotates along its center for a certain angle. For other
tasks such as slope walking and stairs climbing, more actions
can be added to the action library.

d

θ

(a) Translation (b) Rotation

Fig. 3 Two basic actions.

 As an interface to the high-level planning subsystem, the
task layer only cares about the input/output of an action, which
are listed in Table I and II.

2147

TABLE I
SPECIFICATION OF THE TRANSLATION ACTION

Action parameter
The translation distance, go forward as + and go

backward as -
Initial configuration Standard configuration
Final configuration Standard configuration

TABLE II

SPECIFICATION OF THE ROTATION ACTION
Action parameter The rotation angle, turn left as + and turn right as -

Initial configuration Standard configuration
Final configuration Standard configuration

 In the middle-level action design subsystem, we need to
specify the detailed movements within each action. To ensure
static stability, the strategy we adopted is to let the robot
switch between body shift and leg swing. During the period of
body shift, the robot keeps its four feet on the ground and
shifts the body to the desired position/orientation. During leg
swing, the robot keeps it body still and lifts one foot, move it
to reach the desired position and then put it down.
 Specifically, the translation action consists of 7
movements as shown in Fig. 4. In consideration of stability,
the leg swing sequence is 4-2-3-1 when going forward and 2-4-
1-3 when going backward.

Body shift Leg swing
Left 5cm

Leg swing Body shift Leg swing Body shift Leg swing
① ② ③ ④ ⑤ ⑥ ⑦

Foot4 d

Foot1 Foot2

Foot3 Foot4

Foot2 d Foot3 d Foot1 dRight 10cm
Forward d

Left 5cm

Action parameter: d = the translation distance

Fig. 4 Action of translation (go forward).

 The rotation action consists of 9 movements as shown in
Fig. 5. To obtain larger stability margin, the leg swing
sequence is 1-2-4-3 when the robot makes a right turn and 2-1-
3-4 when it makes a left turn.

Body shift Leg Swing Leg Swing Body shift

Body shift Body shift

Leg Swing

Leg Swing

① ② ③ ④ ⑥

⑦ ⑧ ⑨

Backward 5cm Foot1 Foot2 Forward 10cm Foot4

Foot3 Backward 5cm Turn left θ

Action parameter: θ = the rotation angle
Foot1 Foot2

Foot3 Foot4

Fig. 5 Action of rotation (turn right).

 During a rotation, we need to determine the next location
of each foot. As shown in Fig. 6, R is half the length between

two diagonal feet in the standard configuration, α is the angle
between the foot diagonal line and the fore-aft centerline of the
robot, and θ is the rotation angle.

θ

x

y

α
Foot1

Foot2

Foot3 Foot4

dx2

dy2

αθ

dx1

dy1

R

Fig. 6 Next location of each foot after a rotation.

 When the robot makes a right turn of θ, the relative
displacement of Foot 1 and Foot 2 can be obtained as

1

1

2

2

sin sin

cos cos

sin sin

cos cos

x

y

x

y

d R

d R

d R

d R

 (1)

Similarly, for Foot 3 and Foot 4, we have

3

3

4

4

sin sin

cos cos

sin sin

cos cos

x

y

x

y

d R

d R

d R

d R

 (2)

Then the robot can place its feet to the right position
during leg swing.

III. TASK REALIZATION

 Based on the action library, it is now ready to do the high-
level motion planning according to different tasks. In this
section we will introduce how to realize the path following and
ditch crossing task, respectively.
A. Path Following
 For the path following task, the center (i.e., CoM) of the
quadruped robot is required to follow a predefined path on the
level ground as shown in Fig. 7. Particularly, the robot is
required to adjust its orientation according to its position on
the path so that the robot’s head is always facing to the front
path.
 The strategy we adopted here is similar to the “turtlesim”
simulator in ROS Kinetic, where the turtle can rotate or go
forward and it can move around by controlling the transition
between these two actions. For path following, the key is to
determine when the robot should go forward and when to
make a turn. Since we have already built the action library, the

2148

problem then becomes to determine which action to take. The
detailed path following algorithm is given in Fig. 8.

φ

Path

Foot4Foot3

Foot1 Foot2

O

B

A

Fig. 7 Schematic diagram of path following.

Find the closet point A on the path to the
robot center O

Start

Calculate the angle φ between OB and the
fore-aft centerline of the robot

|φ|≥20°

Do traslation of
|OB|

Do rotation of
sign(φ)*20°

Do rotation of φ |φ|≥3°

Stop?
Yes

End

No

No
Yes

No

Yes

Find another point B which is 15cm away
from A along the path

|OB|≥20cm
Do traslation of

20cm Yes

No

Fig. 8 The path following algorithm.

B. Ditch Crossing
 For the ditch crossing task, the quadruped robot is
required to safely cross a ditch from one side to another side
on the level ground. We assume that the ditch width does not
exceed the maximum step length of the quadruped robot. The
basic idea of the ditch crossing strategy is: keep the body front
edge parallel to the edge of the ditch, and then go forward and
adjust the step length according to the location of the ditch. As
shown in Fig. 9, denote the ditch width as w, the distance of
the front leg to the ditch edge as d1 and the distance of the hind
leg to the ditch edge as d2. Then the detailed ditch crossing
algorithm is given in Fig. 10. With this algorithm, the robot

can safely step over the ditch regardless of its initial position
and orientation.

Ditch

Foot4

Foot3 Foot1

Foot2

O d1

d2

w

Fig. 9 Schematic diagram of ditch crossing.

Start

Calculate the angle ψ between the body
front edge and the edge of the ditch

|ψ|≥1°

Do translation of
15cm

Do rotation of ψ

Do traslation of
d1 －1

1<d1<15cm

Stop?
Yes

End

No

No
Yes

No
Yes

0<d1≤1cm
Do traslation of

w+2

1<d2<15cm

0<d2≤1cm

Do traslation of
d2 －1

Do traslation of
w+2

Yes
No

Yes

Yes

No

No

Calculate the distance d1 and d2

Fig. 10 The ditch crossing algorithm.

IV. SIMULATION RESULTS

To validate the effectiveness of the proposed method,
simulations are done in the V-REP software with the Newton
physical engine. The quadruped robot model we built in V-
REP is shown in Fig. 11, which is originated from our
prototype quadruped robot as shown in Fig. 12.

Unlike many other quadruped robot, the leg configuration
we adopted is backward/forward (outward-pointing) because:
(1) To ensure that the CoM is close to the geometric center, a
symmetric configuration (inward-pointing or outward-
pointing) is preferred considering that the leg is relatively

2149

heavy since one motor is placed on the knee. (2) Outward-
pointing can avoid collision between the front leg and the hind
leg. Other specifications of the quadruped robot model are
listed in Table III.

Fig. 11 The quadruped robot model in V-REP.

Fig. 12 The prototype quadruped robot.

TABLE III

SPECIFICATIONS OF THE QUADRUPED ROBOT MODEL
Size (L × W × H, fully stretched legs) 0.6m×0.4m×0.65m

Weight 56kg

Degrees of Freedom
12 (3 per leg, including HAA,

HFE, and KFE)
Joint Torque 100 Nm for all joints

A. Path Following
 To test the path following algorithm, we built the scenario
as shown in Fig. 13. Two paths are considered here: one is a
closed curve and the other is a pentagram.

Fig. 13 Scenario of the path following task.

 Fig. 14 shows the simulation results of following a closed
curve. The blue line shows the trajectory of the robot center
while the red dots are the position of the robot center after
taking each action. It can be observed that the robot follows
very well with the curve. Specifically, the robot’s center is
almost exactly on the path after each action, while it crossess
the path back and forth during each action. Fig. 15 shows the

simulation results of following a pentagram path. The robot
still follows very well. Particularly, it is noticed that the red
dots are dense at the sharp corners. This is because that the
robot do rotation for several times at the corner to adjust its
orientation so that the robot can face to the path.

Fig. 14 Simulation results of following a closed curve. The blue line shows
the trajectory of the robot center while the red dots are the position of the

robot center after taking each action.

Fig. 15 Simulation results of following a pentagram path.

B. Ditch Crossing
 To test the ditch crossing algorithm, we built the scenario
as shown in Fig. 16. The ditch width is 20cm, and the initial
orientation of the robot’s body is not aligned with the ditch.

Fig. 16 Scenario of the ditch crossing task.

2150

 The simulation result is shown in Fig. 17. The red dots
represent the footprints of the front legs and the blue dots for
the hind legs. It can be seen that all the footprints avoids the
ditch very well which indicates that the robot successfully
crosses the ditch. The footprints show that the robot is
adjusting its orientation at the beginning to make its body front
edge be parallel with the ditch edge. After its orientation is
ready, the robot starts to approach the ditch. Particularly, it can
be noticed that the robot reduces its step length when the front
legs are close to the ditch.

Fig. 17 Simulation results of ditch crossing. The red dots represent the

footprints of the front legs and the blue dots for the hind legs.

 To further verify that the ditch crossing ability is
irrelevant with the robot’s initial position/orientation, 50
MonteCarlo runs are taken with the robot’s initial orientation
selected randomly within [0, 360 °] and its initial position
selected randomly within a 40cm×40cm region (the black
square in Fig. 18). The simulation results are given in Fig. 18.
Still the red dots represent the footprints of the front legs and
the blue dots for the hind legs. It can be seen that the robot
successfully crosses the ditch for all the 50 trials, which
verifies the robustness of the ditch crossing algorithm.

Fig. 18 Monte Carlo simulation results of ditch crossing. The robot’s initial
orientation is selected randomly within [0, 360°] and its initial position is

selected randomly within the black square.

 V. CONCLUSIONS
 This paper proposes a task-oriented hierarchical control
framework for a quadruped robot. There are four layers in this

framework, including the task, action, movement, and joint
layer. The action is the core in this framework, which consists
of a series of movements that take the robot from an initial
position/orientation to another position/orientation. Different
actions can be combined to achieve a given task. Two tasks are
considered in this paper, including path following and ditch
crossing. A customized action library is built and the high-
level control algorithms are presented. This framework takes
into account both universality and extendibility, which gives it
the potential to accomplish a wide variety of tasks. In the
future, more complicated tasks such as slope walking and
stairs climbing will be considered and experiments will be
done with our practical robot platform.

REFERENCES

[1] X. Chen, Z. Yu, W. Zhang, Y. Zheng, and Q. Huang, A. Ming,
“Bioinspired Control of Walking with Toe-off, Heel-strike and
Disturbance Rejection for a biped robot,” IEEE Transactions on
Industrial Electronics, vol. 64, no. 10, pp. 7962-7971, 2017.

[2] P. G. De Santos, E. Garcia, and J. Estremera, Quadrupedal locomotion:
an introduction to the control of four-legged robots. Springer Science &
Business Media, 2007.

[3] X. Chen, K. Watanabe, K. Kiguchi, and K. Izumi, “Path tracking based
on closed-loop control for a quadruped robot in a cluttered environment,”
Journal of Dynamic Systems, Measurement, and Control, vol. 124, no. 2,
pp. 272-280, 2002.

[4] S. Ma, T. Tomiyama, and H. Wada, “Omnidirectional static walking of a
quadruped robot,” IEEE Transactions on Robotics, vol. 21, no. 2, pp.
152-161, 2005.

[5] J. Z. Kolter and A. Y. Ng, “Learning omnidirectional path following
using dimensionality reduction,” Robotics: Science and Systems, 2007.

[6] J. M. Yang, “Two-phase discontinuous gaits for quadruped walking
machines with a failed leg,” Robotics and Autonomous Systems, vol. 56,
no. 9, pp. 728-737, 2008.

[7] X. Wu, X. Shao, and W. Wang, “Gait planning of crossing planar
obstacles for a quadruped robot,” in IEEE International Conference on
Robotics and Biomimetics (ROBIO), 2013, pp. 692-697.

[8] Y. Gao, V. Barasuol, D. G. Caldwell, and C. Semini, “Study on the
morphological parameters of quadruped robot designs considering ditch
traversability,” in IEEE International Conference on Robotics and
Biomimetics (ROBIO), 2016, pp. 283-288.

[9] M. Focchi, A. Del Prete, I. Havoutis, R. Featherstone, D. G. Caldwell,
and C. Semini, “High-slope terrain locomotion for torque-controlled
quadruped robots,” Autonomous Robots, vol. 41, no. 1, pp. 259-272,
2017.

[10] C. Yu, L. Zhou, H. Qian, and Y. Xu, “Posture Correction of Quadruped
Robot for Adaptive Slope Walking,” in IEEE International Conference
on Robotics and Biomimetics (ROBIO), 2018, pp. 1220-1225.

[11] C. Liu, Q. Chen, and D. Wang, “CPG-inspired workspace trajectory
generation and adaptive locomotion control for quadruped robots,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 41, no. 3, pp. 867-880, 2011.

[12] D. Pongas, M. Mistry, and S. Schaal, “A robust quadruped walking gait
for traversing rough terrain,” in IEEE International Conference on
Robotics and Automation (ICRA), 2007, pp. 1474-1479.

[13] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture for
quadruped locomotion over rough terrain,” in IEEE International
Conference on Robotics and Automation (ICRA), 2008, pp. 811-818.

[14] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Fast,
robust quadruped locomotion over challenging terrain,” in IEEE
International Conference on Robotics and Automation (ICRA), 2010, pp.
2665-2670.

2151

